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Abstract

The acoustic wave equation for quasi-one-dimensional propagation is obtained, along a duct with a small
wall sinusoidal perturbation and containing a low Mach number mean flow. The motivation is the study of
the effect of wall roughness on the propagation of sound in a duct, and also of the effect of repeated
reflections at periodic changes in cross-sectional area. The ray approximation, which holds only for
wavelengths which are short compared with the length scales of the variation of the cross-section and mean
flow velocity, is used as a factor to reduce the wave equation to a Schr .odinger form. The exact solutions are
obtained, without restriction, as power series expansions around the middle of the duct; since this solution
fails to converge at the two ends of the duct it is matched to the other solutions there. In this way it is
possible to calculate everywhere reduced potential, (unreduced) potential, velocity and pressure
perturbations. These are plotted as a function of the longitudinal co-ordinates along the duct for several
values of the three dimensionless parameters in the problem, viz., (1) the relative height of wall
corrugations, (2) the Mach number of the mean flow at the central section and (3) the wavenumber made
dimensionless multiplying by the periodicity of corrugations.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The propagation of waves in ducts with wall undulations has been considered both in the
context of acoustic [1,2] and electromagnetic [3,4] waves. For sound of high frequency, the
acoustic wave equation is solved together with a boundary condition at the undulated duct wall. If
the wavelength is larger than the transverse dimensions of the duct, then only the fundamental
longitudinal mode exists. If the changes in cross-section are not too rapid, so that the wavefronts
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remain approximately plane, then a quasi-one-dimensional representation can be used, in which
the wave field depends only on time and the longitudinal distance along the duct axis. In the case
of the acoustics of ducts without a mean flow this corresponds to the theory of horns [5–8]; an
important extension is the acoustics of nozzles, allowing for the presence of a mean flow [9–12].
The present paper addresses the quasi-one-dimensional acoustics of ducts with sinusoidal wall
corrugations, both in the absence and presence of a mean flow, of low Mach number in the latter
case.
The basic underlying assumption in quasi-one-dimensional acoustic propagation theory,

implies that the height of corrugations relative to the transverse dimensions of the duct be small,
in the sense e2{1 or eo0:3; and includes two cases of practical engineering interest, viz., the case
(1) of very small corrugations say eo0:1; and the case (2) of moderate periodic changes of cross-
section 0:1oeo0:3: The first case (1), of small corrugations eo0:1; demonstrates the effect of wall
roughness on the propagation of sound in a duct; even if this effect is small over a wavelength, the
question arises of what is the propagation distance, expressed in number of wavelengths, for
which it becomes non-negligible. The second case (2) of moderate change in cross-section
0:1oeo0:3 is known to lead to wave reflection and transmission at the first contraction; the
question arises as to the possible additional effect of reflection and transmission at similar periodic
undulations of the wall shape. An engineering example, is a flexible inlet duct of an engine; this
example also points to the restrictions of the present theory, implied in the assumptions of quasi-
one-dimensional acoustic propagation: the effects of flow and acoustic boundary layers near the
duct walls are neglected, as are those of vortex shedding by the corrugations; coupling to flexible
wall modes is also not considered.
After presenting briefly in the introduction (Section 1) the background to the present problem,

the solution of the convected nozzle wave equation (Section 2) is considered for a duct with
sinusoidal undulations (Section 3). The acoustic wave field is represented by the potential, velocity
and pressure perturbations (Section 4), which depend on three parameters, namely, the
longitudinal wavenumber, the Mach number and the height of corrugations (Section 5). It is
possible to introduce a reduced potential, which is independent of the Mach number, and thus is
the same for a horn (in the sense of a duct not carrying a mean flow) or a nozzle containing a low
Mach number mean flow. The four acoustic variables, viz., the reduced potential, the (unreduced)
potential, the velocity and pressure perturbations, are plotted for one period of the duct length,
for several combinations of the parameters (Figs. 1–7). The acoustic wave field has two
components, which can be expanded as power series around the middle position; since these series
do not converge near the edges of one duct period, two other series representations are obtained,
valid near the edges (Appendix A) and then matched to the ‘central’ solution (Appendix B).

2. Quasi-one-dimensional propagation in a low Mach number nozzle

Starting from the classical wave equation for the acoustic potential f in an inhomogeneous
medium [13]

c�2@2r=@t2 � r�1r � ðrrfÞ ¼ 0; ð1Þ
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where c is the sound speed and r the mass density, for quasi-one-dimensional propagation of the
fundamental longitudinal mode, the convected nozzle wave equation can be obtained [14] by (1)
replacing the mass density r per unit volume by the mass density per unit length of duct rS; where
SðxÞ is the cross-sectional area, leading to the horn [15] wave operator:

r�1ðr � rrfÞ-S�1ð@=@xÞðS@f=@xÞ ¼ f00 þ ðS0=SÞf0; ð2Þ

where the mass density is taken a constant ðr ¼ constÞ and prime denotes derivative with respect
to the longitudinal co-ordinate x along the duct axis, viz., f0 	 @f=@x; (2) the effect of convection
of sound by the mean flow with velocity UðxÞ is accounted for replacing [16] the local derivative
by the material derivative

@2f=@t2-d2f=dt2 	 ð@=@t þ U@=@xÞ2f ¼ .fþ 2U ’f0 þ UðUf0Þ0; ð3Þ

where dot denotes derivative with respect to time ð ’f 	 @f=@tÞ: The substitution (3) is valid in the
low Mach number approximation, in which case the last term on the r.h.s of (3) can be omitted
when replacing Eq. (3) together with Eq. (2) in Eq. (1)

U2{c2 : .fþ 2U ’f0 � c2½f00 þ ðS0=SÞf0� ¼ 0 ð4Þ

to lead to the convected nozzle wave equation, specifying the acoustic potential for quasi-one-
dimensional sound propagation in a duct of varying cross-section containing a low Mach number
mean flow. By quasi-one-dimensional sound propagation it is meant [7] that only the fundamental
longitudinal acoustic mode is considered, whose wavelength must be larger than the transverse
dimensions of the duct l > dB

ffiffiffiffi
S

p
(otherwise transverse modes would exist), and the changes in

cross-section should be moderate, so that the wavefronts remain approximately flat, and thus the
wave variables can be considered as constant over the cross-section (no flow or acoustic boundary
layers near the wall), and depend only on the longitudinal co-ordinate x along the axis of the duct
(and on time t).
A one-dimensional flow UðxÞ is always potential, and at low Mach number U2{c2 the sound

speed c and mass density r are constant, and the conservation of the volume flux UðxÞSðxÞBconst;
which implies that the lengthscale of variation of cross-sectional area SðxÞ is the same, apart from
sign, as the lengthscale of variation of the mean flow velocity UðxÞ:

L 	 S=S0 ¼ �U=U 0: ð5Þ

Since the mean state properties do not depend on time, it is convenient to use a Fourier
decomposition

fðx; tÞ ¼
Z

N

�N

Fðx;oÞe�iot do; ð6Þ

where F is the spectrum of the acoustic potential for a wave of frequency o at position x:
Substitution of Eq. (6) into Eq. (4) leads to a second order linear ordinary differential equation

F00 þ ð1=L þ 2ikMÞF0 þ k2F ¼ 0 ð7Þ

whose coefficients involve

k 	 o=c; MðxÞ 	 UðxÞ=c ð8a;bÞ

ARTICLE IN PRESS

F.J.P. Lau, L.M.B.C. Campos / Journal of Sound and Vibration 270 (2004) 361–378 363



the wavenumber (8a) which is constant, and the Mach number (8b) and length-scale (5) which are
generally functions of position: (1) the Mach number (8a) would be constant only for a uniform
flow in a duct of constant cross-section and (2) the lengthscale (5) would be constant only for an
exponential duct.
It is well known [17] that the coefficient of the first derivative F0 in Eq. (7) can be eliminated by

the change of independent variable

Fðx;oÞ ¼ exp �
Z x

ð1=2L þ ikMÞ dx
� �

Cðx;oÞ; ð9Þ

which leads to a differential equation in ‘Schrodinger’ form

C00 þ ½k2 � ð1=2LÞ0 � 1=4L2�C ¼ 0; ð10Þ

in which all the terms in the square brackets involving the Mach number:

M2{1 : k2M2 þ ikM 0 þ ikM=L ¼ k2M2{k2; ð11Þ

cancel on account of L ¼ �M=M 0 in Eq. (5), or are negligible at low Mach number. In the ray
approximation of wavelength l much smaller than the lengthscale L of changes in cross-section
ðl2{L2Þ (but still larger than the dimension of the cross-section l > d; to preserve quasi-one-
dimensional propagation), Eq. (10) simplifies to C00 þ k2C ¼ 0; and its solution

1{k2L2 ¼ ð2pL=lÞ2 : C7ðx;oÞBe7ikx; ð12Þ

is a superposition of plane waves, propagating in the positive Cþ and negative C� x-direction.
The transformation (9) shows

Fðx;oÞ ¼ Fð0;oÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þ=SðxÞ

p
exp �ik

Z x

0

MðxÞ dx
� �

Cðx;oÞ ð13Þ

that (1) the wave amplitude scales like the inverse square root of the cross-sectional area
FBS�1=2; so that the acoustic energy flux rSc jF j2Bconst is conserved, (2) the mean flow causes a
phase shift specified by the integrated Doppler shift [12,18], viz. the last term on the right hand
side of Eq. (13). If the restriction k2L2

c1 of the ray approximation is not made, then Eq. (13)
may still be used to specify a reduced acoustic potential C; which in general is still a plane wave
(12), but is now specified by the exact solution of Eq. (10). Since the latter does not involve the
Mach number, the reduced acoustic potential is the same for a duct with or without a low Mach
number mean flow.

3. Duct with sinusoidal wall undulations

The linear, second order, ordinary differential equation in ‘Schrodinger’ form (10), which
specifies the reduced acoustic potential, will be solved exactly for a duct with sinusoidal wall
undulations, so that the cross-sectional area

0oeo1: SðxÞ ¼ S0½1þ e cosðx=lÞ� ð14aÞ
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varies around the mean value S0; with a longitudinal period 2pl; viz., Sðx þ 2plÞ ¼ SðxÞ; and e is
the relative height of the corrugations. Note that the lengthscale (5) of variations in cross-section:

�LðxÞ ¼ lfcotðx=lÞ þ ð1=eÞ cscðx=lÞg; ð14bÞ

takes the minimum value (in modulus) jLminj ¼ l=e for x=l ¼ np7p=2 corresponding to the
average cross-section Sðnp7p=2Þ ¼ S0; and becomes infinite LðnpÞ ¼ N for x=l ¼ np corre-
sponding to the minimum or maximum cross-sections SðnpÞ ¼ S0½1þ eð�1Þn�: Substitution of
Eq. (14a,b) into Eq. (5) leads Eq. (10) to the differential equation

l2½1þ e cosðx=lÞ�2C00 þ fk2l2½1þ e cosðx=lÞ�2

ðe=2Þ cosðx=lÞ ½1þ e cosðx=lÞ� þ ðe=2Þ2 sin2ðx=lÞgC ¼ 0; ð15Þ

for the reduced acoustic potential. The change of independent variable,

y 	 cosðx=l Þ; F ðyÞ 	 Cðx;oÞ; ð16a;bÞ

transforms the coefficients from sinusoidal functions in Eq. (15) to polynomials in

4ð1� y2Þð1þ eyÞ2 F 00 � 4yð1þ eyÞ2F 0

þ ½4k2l2ð1þ eyÞ2 þ e2 þ 2ey þ e2y2�F ¼ 0; ð17Þ

where prime now denotes derivative with regard to y; viz., F 0 	 dF=dy:
Since the shape (14) of the duct is periodic, it is sufficient to consider a longitudinal section

0px=lp2p; corresponding Eq. (16a) to �1pypþ 1: Note that the differential equation (17) has
[17] three regular singularities:

y ¼ �1=e;71; ð18Þ

viz.: (1) one regular singularity y ¼ �1=eo� 1 for eo1 lies outside the interval �1pyp1 of
interest, (2) the other two regular singularities y ¼ 71 lie at the ends of the interval of interest.
The simplest solution [17] is to expand in a power series around the central position y ¼ 0; which
is a regular point

FsðyÞ ¼
XN
n¼0

anðsÞynþs; ð19Þ

substitution of Eq. (19) into Eq. (17) leads to the recurrence formula for the coefficients:

0 ¼ 4ðn þ sÞðn þ s� 1ÞanðsÞ þ 8eðn þ s� 1Þðn þ s� 2Þan�1ðsÞ

þ f4ðn þ s� 2Þ½ðe2 � 1Þðn þ s� 3Þ � 1� þ 4K2 þ e2gan�2ðsÞ

þ 4e½1þ 4K2 � 4ðn þ s� 3Þ2�an�3ðsÞ

þ e2½1þ 4K2 � 4ðn þ s� 4Þ2�an�4ðsÞ ð20Þ

which involves two dimensionless parameters: (1) the relative height e of undulations in (13) and
(2) the dimensionless wavenumber

K 	 kl ¼ ol=c; ð21Þ

obtained multiplying the wavenumber (8a) by l which specifies the spatial periodicity 2pl of the
duct.
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Setting n ¼ 0 in Eq. (20) yields the indicial equation:

n ¼ 0 : 4sðs� 1Þa0 ¼ 0: ð22Þ

The case a0ðsÞ ¼ 0; would lead by Eq. (20) to anðsÞ ¼ 0 for all n ¼ 1; 2;y;N; and hence to a
trivial solution FsðyÞ ¼ 0: Thus a non-trivial solution is possible only for s ¼ 0; 1: Setting n ¼ 1 in
Eq. (20) yields the indicial equation:

4sð1þ sÞa1ðsÞ þ 8esðs� 1Þa0ðsÞ ¼ 0; ð23Þ

which should be considered for the two cases in s ¼ 0; 1: (1) if s ¼ 1; it follows from Eq. (23) that

s ¼ 1 : a1ð1Þ ¼ 0aa0ð1Þ; ð24aÞ

which specifies by Eq. (19) a solution F1ðyÞ of Eq. (17); (2) if s ¼ 0; then Eq. (23) can be satisfied
by

s ¼ 0 : a1ð0Þa0 ¼ a0ð0Þ; ð24bÞ

which leads by Eq. (19) to a solution F0ðyÞ; which is linearly independent of the preceding. The
general solution is a linear combination of the preceding

FðyÞ ¼ B0F0ðyÞ þ B1F1ðyÞ; ð25Þ

where the arbitrary constants of integration B0; B1 are determined from boundary conditions. The
two boundary conditions could be the acoustic velocity and pressure perturbations at the duct
entrance, for example.

4. Acoustic potential, velocity and pressure

Substituting Eq. (16a,b) in Eq. (19) the two components of the reduced acoustic potential are:

Csðx;oÞ ¼
XN
n¼0

anðsÞ cosnþsðx=lÞ; ð26Þ

which apply to a duct without flow (horn); the mean flow Mach number

MðxÞ=M0 ¼ UðxÞ=U0 ¼ 1=½1þ e cosðx=lÞ�; ð27Þ

appears (9) in the (unreduced) acoustic potential

Fsðx;oÞ ¼ ½1þ e cosðx=lÞ��1=2 Csð0;oÞ

exp � 2iKM0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p� �
arctan ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� eÞ=ð1þ eÞ

p
tanðx=2lÞ�

n o
; ð28Þ

which applies to a duct with flow (nozzle). Bearing in mind the periodicity of wall undulation, the
acoustic fields need only be considered in a longitudinal section of the duct

0px=lpp; ð29Þ

between the maximum Smax ¼ Sð0Þ ¼ S0ð1þ eÞ and minimum Smin ¼ SðplÞ ¼ S0ð1� eÞ cross-
sections.
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The acoustic velocity v and pressure p perturbations, or their respective spectra V ; P

v; pðx; tÞ ¼
Z þN

�N

V ;Pðx;oÞe�iot do; ð30a;bÞ

are related to the spectrum of the acoustic potential F: (1) for the acoustic velocity, by the gradient

v ¼ rf; Vsðx;oÞ ¼ dFsðx;oÞ=dx; ð31a;bÞ

(2) for the acoustic pressure by the material derivative:

p ¼ �rdf=dt ¼ �rð ’fþ Uf0Þ; ð32Þ

or equivalently in terms of spectra

Psðx;oÞ ¼ iroFsðx;oÞ � rUðxÞVsðx;oÞ; ð33Þ

where Eq. (31b) was used.
The acoustic field depends on three dimensionless parameters, namely (1) the relative height of

corrugations e in Eq. (14a), (2) the mean flow Mach number (8b) at the average cross-section
M0 ¼ Mðx=l ¼ p=2Þ in Eq. (27) and (3) the dimensionless (21) wave number (8a). One way to
assess the influence of these three parameters is to select a set:

e ¼ 0:2; M0 ¼ 0:1; K ¼ 1; ð34a2cÞ

of baseline values (34a–c), and then to vary each in turn as follows. The relative height of
undulations e satisfies 0peo1; and is restricted to e2{1 for quasi-one-dimensional propagation;
it is given the baseline (34a) value e ¼ 0:2; plus

e ¼ 0:0; 0:1; 0:2; 0:3; ð35a2dÞ

smaller e ¼ 0:1 and larger e ¼ 0:3 values, with the uniform duct e ¼ 0:0 also included for
reference. The Mach number M0 ¼ Mðpl=2Þ at the average cross-section x ¼ pl=2; Sðpl=2Þ ¼ S0 is
given the baseline (34b) value M0 ¼ 0:1; consistent with low Mach number mean flow ðM0Þ

2{1;
as well as

M0 ¼ 0:01; 0:1; 0:2; ð36a2cÞ

a lower value, and a very small value corresponding to almost negligible flow. The dimensionless
wavenumber (21) is given a baseline value K ¼ 1 corresponding to a longitudinal periodicity
2pl ¼ 2p=k ¼ l equal to the wavelength; besides,

K ¼ 0:1; 1; 10; ð37a2cÞ

is given a much larger value corresponding to the ray approximation K2
c1; and a smaller value

corresponding to the opposite limit of compact scattering K{1: The highest value of the Mach
number at the average section M0 ¼ 0:2 still satisfies the low Mach number approximation in the
narrowest section M2pM2

max ¼ ½M0=ð1� eÞ�2p½0:2=ð1� 0:3Þ�2 ¼ 0:082{1; the largest height of
undulations e ¼ 0:3 is limited by the approximation e2{1 of plane wavefronts e2p0:32 ¼
0:09{1; the largest dimensionless wavenumber 10 ¼ K ¼ ol=c ¼ 2pl=l; for a wavelength l ¼
pl=5 is compatible with quasi-one-dimensional propagation if the transverse lengthscale of the
cross-section dB

ffiffiffiffi
S

p
is smaller dol; i.e., for a tube of small transverse dimension relative to the

periodicity of undulations dopl=5: Further restrictions in the case of a duct with mean flow relate
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to the neglect of acoustic and flow boundary layers, and omission of vortex shedding from the
wall corrugations.

5. Effect of wavenumber, Mach number and height of corrugations

The two components ðs ¼ 0; 1Þ of the four acoustic fields (reduced potential Cs; acoustic
potential Fs; velocity Vs and pressure Ps), are plotted next over one-half the longitudinal period
(29), varying in turn each of the dimensionless parameters (height of undulations e;Mach number
M0 and wavenumber K). The plots of the two components (even and odd) of the acoustic fields
are based on the series expansion (19) or (26) around the middle position x ¼ pl=2 or y ¼ 0; which
fail to converge at the widest x ¼ 0; y ¼ 1 and narrowest x ¼ pl; y ¼ �1 sections, because y ¼ 71
are singularities (18) of the differential equation (17). The point y ¼ 0 is a regular point, and the
solution in power series about this point converges for jyjo1 or �1oyoþ 1: It is possible to
obtain (Appendix A) around the regular singularities at y ¼ 71; Frobenius–Fuchs expansions in
powers of ðy81Þ; which can be matched (Appendix B) to solution (19), to specify the acoustic field
in the entire duct jyjp1 or 0pxppl; as required for the plots in Figs. 1–7.
The simplest acoustic field is the reduced potential Csðx;oÞ; because: (1) it is real, i.e., it is a

standing wave, which has as amplitude and no phase; (2) it is independent of the Mach number,
and thus affected only by the wavenumber K and height of undulations e: The reduced acoustic
potential for a duct of constant cross-section e ¼ 0 would be (12) a plane wave, given by a
sinusoidal function of kx: The reduced acoustic potential C0ðx;oÞ is plotted in Fig. 1 versus the
longitudinal co-ordinate y ¼ cosðx=lÞ; with s ¼ 0 on the right and s ¼ 1 on the left, and varying e
at the top and varying K at the bottom. It is seen (Fig. 1 top left) that for 1 ¼ K ¼ kl and a duct of
constant cross-section e ¼ 0; C1 ¼ y ¼ cosðx=lÞ ¼ cosðkxÞ ¼ �sinðx=l � p=2Þ is a sinusoidal wave
odd relative to the mid-position; towards the smallest section x ¼ pl; y ¼ �1; S ¼ S0ð1� eÞ the
value of C1 is smaller in absolute value for larger height of undulations; towards the wider section
of the duct x ¼ 0; y ¼ 1; S ¼ S0ð1þ eÞ the amplitude is reduced relative to a plane wave, although
it resumes the normalized valueC1 ¼ 1 at x ¼ 0: In the middle section x ¼ pl=2; y ¼ 0; S ¼ S0 the
amplitude is independent of the height of undulations. It is seen in Fig. 1 bottom left that the
oscillatory character of the wave field C1 becomes evident for larger wavenumber K ¼ 10; and is
not noticeable for small wavenumber K ¼ 0:1: The other component of the reduced potential
(Fig. 1 top right) for K ¼ 1 and a duct of constant cross-section is C0ðx;oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
¼

sinðx=lÞ ¼ sinðkxÞ ¼ cosðx=l � p=2Þ also a sinusoidal wave, which is even relative to the mid-
position; as the height of undulations e becomes larger, the amplitude decreases towards the
narrow end x ¼ pl and increases towards the wider end x ¼ 0: As for C0; also for C1; the
oscillatory character of the wave field (Fig. 1 bottom right) becomes evident for larger
wavenumber.
Relative to the reduced potential C; the acoustic potential F introduces (13) an amplitude

change due to variations in cross-section and a phase shift due to the Doppler effect of the mean
flow. It follows that the acoustic potential is a complex quantity, and it depends on the Mach
number, in addition to the height of undulations and the wavenumber. The first component of the
acoustic potential F0 is plotted in Fig. 2, separating the amplitude jF0j on the left from the phase
argðF0Þ on the right, and varying in turn the height of undulations (top), the Mach number
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(middle) and the wavenumber (bottom). Fig. 2 top left shows that the acoustic potential would be
symmetric relative to the mid-position for a duct of constant cross-section e ¼ 0; but as the height
of undulations increases the amplitude is higher in the narrower section x ¼ pl; peaks away from
the middle and the node moves away from the widest section x ¼ 0; this is confirmed (Fig. 2 top
right) by the phase jump of 180� at the node moving away from the widest section, with phase
variations being otherwise small, due to weak Doppler effects for K ¼ 1 and M0 ¼ 0:1: A phase
jump of p corresponds ðeip ¼ �1Þ to a change of sign of the acoustic field, as it goes through a
zero. The amplitude of the first component of the acoustic potential (Fig. 2 middle left) is little
affected by the Mach number, whereas the phase (Fig. 2 middle right) shows an increased but still
weak Doppler effect for K ¼ 1: For larger wavenumber K ¼ 10 the oscillatory character is more
evident in the amplitude (Fig. 2 bottom left), which has more nodes, and in the phase (Fig. 2
bottom right), which has more phase jumps. Whereas the first component of the acoustic potential
F0 is basically an ‘even’ function (Fig. 2), which peaks near the middle section, the second
component F1 is basically an ‘odd’ function which (Fig. 3) vanishes at the middle section, and
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Fig. 1. Reduced acoustic potential Csðx;oÞ versus longitudinal co-ordinate y 	 cosðx=lÞ over one-half period of the

duct 0pxppl or 1XyX� 1; for (right/left) component s ¼ 0=s ¼ 1 of the wave field; (top/bottom) varying height of

undulations / varying wavenumber.
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becomes more ‘distorted’ with larger amplitudes (Fig. 3 left) and phase (Fig. 3 right) variations
toward the narrow sections as the undulations increase in relative height (Fig. 3 top), the Mach
number of the mean flow increases (Fig. 3 middle) and the dimensionless wavenumber increases
(Fig. 3 bottom). Although the acoustic field can be represented by the unreduced potential alone,
its implications concerning the acoustic velocity and pressure perturbations deserve discussion.

6. Discussion

The acoustic velocity of the first component of the wave field (Fig. 4) is basically an even
function, whose amplitude (Fig. 4 top left) vanishes in the middle section, and increases towards
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Fig. 2. Acoustic potential corresponding to first wave component F0ðx;oÞ versus dimensionless longitudinal distance
x=l over one-half period of the duct 0px=lpp; for (left/right) amplitude/phase; (top/middle/bottom) varying height of
undulations/Mach number/wavenumber.
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the widest and narrowest sections, more at the latter; the phase (Fig. 4 top right) deviates more
from linear near the center section and for larger height of undulations. The Mach number has
little effect on amplitude (Fig. 4 middle left) and a very pronounced effect on phase (Fig. 4 middle
right), which is far from linear; in fact, the phase has a minimum in the mid-section, and then rises
again before decaying towards the narrowest section. As the wavenumber increases the oscillatory
character becomes more evident in the nodes of the amplitude (Fig. 4 bottom left) and jumps of
the phase (Fig. 4 bottom right). The second component of the acoustic velocity (Fig. 5) is basically
an odd function, as it concerns amplitude (Fig. 5 left), with asymmetries which become more
marked for larger height of undulations (Fig. 5 top left) and larger wavenumber (Fig. 5 bottom
left), but are not affected by Mach number (Fig. 5 middle left). The phase (Fig. 5 right) consists
mostly of phase jumps (Fig. 5 top right) with a continuous Doppler shift noticeable for larger but
still low Mach number (Fig. 5 middle right), and rounded-off jump edges for larger wavenumbers
(Fig. 5 bottom right). The first component P0 of the acoustic pressure (Fig. 6), is basically an even
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Fig. 3. As Fig. 2 for second wave component of acoustic potential F1ðx;oÞ:
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function for amplitude (Fig. 6 left) with maxima at the widest and narrowest sections and a
secondary, lower maximum near the middle; these asymmetries become more noticeable for larger
height of undulations (Fig. 6 top left), larger Mach number (Fig. 6 middle left) and larger
wavenumber (Fig. 6 bottom left). The phase (Fig. 6 right) shows similar deviations from
symmetry (Fig. 6 top and middle right), except for larger wavenumbers (Fig. 6 bottom right) when
it becomes an odd function. The second component P1 of the acoustic pressure (Fig. 7) is an odd
function, but otherwise shows similar trends for amplitude (Fig. 7 left) and phase (Fig. 7 right) as
regards variations of the height of undulations (Fig. 7 top), Mach number of mean flow (Fig. 7
middle) and wavenumber (Fig. 7 bottom).
The propagation of sound in a duct with undulated walls can be considered as a particular case

of ‘horn’ or duct of varying cross-section, in the absence of mean-flow and as a particular case of
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Fig. 4. As Fig. 2 for first wave component of acoustic velocity V0ðx;oÞ:
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‘nozzle’ in the presence of mean flow, since the methods of analysis are similar. The acoustics of
horns of varying cross-section is simplest for five shapes which allow solutions in terms of
elementary functions, viz., the exponential [19], catenoidal [20], sinusoidal [21] and inverses [22].
The acoustics of low Mach number nozzles of corresponding shapes involve special functions,
e.g., confluent hypergeometric functions for the exponential shape [23] and modified Mathieu
functions for the catenoidal, sinusoidal and inverse shapes [24,25]. For other duct shapes, special
functions are needed even for horns, e.g., Bessel function for power law ducts [26], and Hermite
functions for Gaussian horns [27]; the extension from horns to nozzles can be made most simply
via a transformation [28] which has been applied to all the preceding shapes. A different
transformation applies to the extension from the acoustics of horns to the longitudinal vibrations
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Fig. 5. As Fig. 2 for second wave component of acoustic velocity V1ðx;oÞ:
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of visco-elastic rods [15,29]. Other horn shapes like multi-parameter ducts [30] have been studied.
The present paper concerns a duct with periodic wall undulations, whose relative magnitude e
should remain consistent e2{1 with quasi-one-dimensional propagation.
The case of very small corrugations eo0:1 represents the effect of surface roughness on sound

propagation in a duct. It can be seen from Figs. 4–7 that the effect on the amplitude of the
acoustic velocity and pressure is small o 1% over an undulation scale. Bearing in mind that the
radius of the duct is much larger, by a factor of ten or more, and the wavelength is larger than the
dimensions of the cross-section for quasi-one-dimensional propagation, the effect over one
wavelength may be non-negligible, and become significant over many wavelengths. The phase
effects of the undulations are more pronounced than amplitude effects, e.g., the phase minimum
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Fig. 6. As Fig. 2 for first wave component of acoustic pressure P0ðx;oÞ:
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in Fig. 4 top right suggests that waves are reflected from the undulations towards the wider section
of the duct. These reflections will be more important for moderate undulations 0:1oeo0:3; when
there are noticeable differences between the narrowest and widest sections of the duct e.g., in
Fig. 7 top left. Since each of the periodic undulations produces a reflection, their cumulative effect
could be significant. In the presence of low Mach number mean flow M2{1; the Mach number at
the average section was restricted to M0o0:2 to keep below Mmaxo0:3 at the narrowest section.
The effect of mean flow is most pronounced on the phase of sound, and could enhance
interference in the case of a sound wave with broad spectrum. The quasi-one-dimensional
approximation assumes uniform flow over the cross-section, and thus neglects the effects of
acoustic and flow boundary layers, in causing a shear flow profile and also the effects of vortex
shedding from the corrugations.
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Fig. 7. As Fig. 2 for second wave component of acoustic pressure P1ðx;oÞ:
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Appendix A. Solutions around the maximum and minimum cross-section

The cross-sectional area of the duct (14) has a maximum Smax ¼ S0ð1þ eÞ [minimum Smin ¼
S0ð1� eÞ� at x ¼ 0 ðx ¼ plÞ; corresponding (16a) to y ¼ 1 ðy ¼ �1Þ which is a regular singularity
of the differential equation (17). The change of independent variable

z ¼ 17y; G8ðzÞ 	 F ðyÞ; ðA:1;A:2Þ

places the regular singularity at z ¼ 0; and transforms the differential equation (27) to

4½1� ðz � 1Þ2�ð17ez8eÞ2 G00
8 � 4ðz � 1Þð17ez8eÞ2G0

8

þ f4K2ð17ez8eÞ2 þ e272ez82e2ðz � 1Þ2gG8 ¼ 0: ðA:3Þ

Since z ¼ 0 is a regular singularity, solutions exist as Frobenius–Fuchs series

G7
n ¼

XN
n¼0

b7
n ðnÞznþn; ðA:4Þ

with recurrence formula for the coefficients:

4ðe282eþ 1Þðn þ nÞð1� 2n � 2nÞb8
n ðnÞ

¼ 2f2ðn þ n� 1Þ½ðn þ n� 2Þð�5e276e� 1Þ � 3e274e� 1�

þ 4K282ð4K2 þ 1Þeþ ð4K2 þ 2Þe2gb8n�1ðnÞ

þ f4ðn þ n� 2Þ½2eðn þ n� 3Þð2e81Þ þ eð3e82Þ�

� 2eð4K2 þ 1Þðe81Þgb8n�2ðnÞ

þ e2f1þ 4K2 � 4ðn þ n� 3Þ2gb8n�3ðnÞ; ðA:5Þ

is obtained by substituting, Eq. (A.4) in Eq. (A.3).
Setting n ¼ 0 in (A.5) leads to the indicial equation

4nðe282eþ 1Þð2s� 1Þb70 ðnÞ ¼ 0; ðA:6Þ

whose roots are n ¼ 0; 1=2; these roots lead to independent solutions

n ¼ 0 : G7
0 ðzÞ ¼

XN
n¼0

b7n ð0Þzn; ðA:7Þ

n ¼ 1=2 : G7
1=2ðzÞ ¼

XN
n¼0

b7n ð1=2Þznþ1=2 ðA:8Þ

which are finite at z ¼ 0; or x ¼ 0; pl: The solution C7
n ðx;oÞ has to be matched to Cnðx;oÞ to

specify the acoustic field in the whole duct.

Appendix B. Matching the three pairs of solutions

The acoustic field is specified by the following pairs of solutions (Table 1) or alternatively using
the variable y ¼ cosðx=lÞ; so that matching can be done at the points

0ox�
1 ; x�

2 opl=2oxþ
1 ; xþ

2 opl; ðB:1Þ
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or equivalently

1 > y�1 ; y�2 > 0 > yþ
1 ; yþ

2 > �1; ðB:2Þ

using the functions presented in Table 2.
Since FsðyÞ is a solution valid at the points yþ

1 ; yþ
2 in the region of overlap with Gþ

n ð1� yÞ; and
at the points y�

1 ; y�2 in the region of overlap with G�
n ð1þ yÞ;

F0ðy71 Þ ¼ A7G7
0 ð18y71 Þ þ B7G7

1=2ð18y7
1 Þ; ðB:3Þ

F1ðy72 Þ ¼ A7G7
0 ð18y72 Þ þ B7G7

1=2ð18y7
2 Þ: ðB:4Þ

Thus the four matching constants A7; B7 are determined by

fA7;B7g½G7
0 ð18y71 ÞG7

1=2ð18y72 Þ � G7
0 ð18y7

2 ÞG7
1=2ð18y7

1 Þ�

¼ fG7
1=2ð18y72 ÞF0ðy71 Þ � G7

1=2ð18y71 ÞF1ðy7
2 Þ;

� G7
0 ð18y72 ÞF0ðy71 Þ þ G7

0 ð18y7
1 ÞF1ðy72 Þg: ðB:5;B:6Þ

In this way the acoustic fields may be calculated for 0oxopl using Eq. (19), for 0pxopl=2 using
Eq. (B.3) and (B.4) with lower signs and for pl=2oxppl using upper lower signs. This procedure
was used to compute the plots in Figs. 1–7.

References

[1] A.H. Nayfeh, O.A. Kandic, Propagation of waves in cylindrical hard-walled ducts with generally weak

undulations, American Institute of Aeronautics and Astronautics Journal 16 (1978) 1041–1045.

[2] A. Bostr .om, Acoustic waves in a cylindrical duct with periodically varying cross-section, Wave Motion 5 (1983)

59–67.

[3] O.R. Asfar, A.H. Nayfeh, Circular waveguide with sinusoidally perturbed walls, IEEE Transactions on Microwave

Theory and Techniques 23 (1975) 728–734.

ARTICLE IN PRESS

Table 1

Acoustic fields

Reduced acoustic potential Index values Region of convergence

Csðx;oÞ s ¼ 0; 1 0oxopl

Cþ
s ðx;oÞ s ¼ 0; 1=2 �pl=2oxopl=2

C�
s ðx;oÞ s ¼ 0; 1=2 pl=2oxo3pl=2

Table 2

Pairs of solutions

Independant variables Series expansion around Particular integral

y ¼ cosðx=lÞ x ¼ pl=2 FsðyÞ
y ¼ 1þ cosðx=lÞ x ¼ pl Gs

þðzÞ
y ¼ 1� cosðx=lÞ x ¼ 0 Gs

�ðzÞ

F.J.P. Lau, L.M.B.C. Campos / Journal of Sound and Vibration 270 (2004) 361–378 377



[4] S.A. Kheifeits, Electromagnetic fields in an axial symmetric waveguide with variable cross-section, IEEE

Transactions on Microwave Theory and Techniques 29 (1981) 222–229.

[5] J.W.S. Rayleigh, Theory of Sound, 2 Vols., Dover Publications, New York, 1827, re-issued 1945.

[6] A.G. Webster, Acoustic impedance and the theory of horns and the phonograph, Proceedings of Nature Science 5

(1919) 275–282.

[7] N.W. McLachlan, Loudspeakers: Theory, Performance, Testing and Design, University Press, Oxford, 1934.

[8] E.S. Weibel, On Webster’s horn equation, Journal of the Acoustical Society of America 27 (1955) 726–727.

[9] N.A. Eisenberg, T.W. Kao, Propagation of sound through a variable-area duct with a steady compressible mean

flow, Journal of the Acoustical Society of America 49 (1969) 169–181.

[10] E. Lumsdaine, S. Ragab, Effect of flow on quasi-one-dimensional acoustic propagation in a variable area duct of

finite length, Journal of Sound and Vibration 16 (1977) 1041–1045.

[11] L.M.B.C. Campos, On linear and non-linear wave equations for the acoustics of high-speed potential flows,

Journal of Sound and Vibration 110 (1986) 41–57.

[12] L.M.B.C. Campos, On generalizations of the Doppler factor, local frequency, wave invariant and group velocity,

Wave Motion 10 (1991) 193–207.

[13] A.D. Pierce, Acoustics, Acoustical Society of America, Woodbury, NY, 1989.

[14] L.M.B.C. Campos, On the fundamental acoustic mode in variable area, low Mach number nozzles, Progress in

Aerospace Sciences 22 (1985) 1–26.

[15] E. Eisner, Complete solutions of the Webster horn equation, Journal of the Acoustical Society of America 41 (1966)

1126–1146.

[16] L.M.B.C. Campos, On waves in gases. Part I: acoustics of jets, turbulence and ducts, Review of Modern Physics 56

(1986) 217–282.

[17] A.R. Forsyth, Treatise on Differential Equations, Macmillan, London, 1885, 6th Edition, 1929.

[18] C. Doppler, .Uber das Farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels, Ostwarld

Klassiker der Exakten Wissenschaften 161 (1893) 1.

[19] H.F. Olson, A horn consisting of manifold exponential sections, Journal of the Society of Motion Picture Engineers

30 (1938) 511.

[20] V. Salmon, A new family of horns, Journal of the Acoustical Society of America 17 (1946) 212–219.

[21] B.N. Nagarkar, R.D. Finch, Sinusoidal horns, Journal of the Acoustical Society of America 53 (1972) 23–31.

[22] L.M.B.C. Campos, Some general properties of the exact acoustic fields in horns and baffles, Journal of Sound and

Vibration 95 (2) (1984) 177–201.

[23] L.M.B.C. Campos, On the propagation of sound in nozzles of varying cross-section containing a low Mach

number mean flow, Zeitschrift fuer Flugwissenschaften Weltraumforschung 8 (1984) 97–109.

[24] L.M.B.C. Campos, F.J.P. Lau, On sound in an inverse sinusoidal nozzle with low Mach number mean flow,

Journal of the Acoustical Society of America 100 (1996) 355–363.

[25] L.M.B.C. Campos, F.J.P. Lau, On the convection of sound in inverse catenoidal nozzles, Journal of Sound and

Vibration 244 (2) (2001) 195–209.

[26] S. Ballantine, Some general properties of the exact acoustic fields in horns and baffles, Journal of Sound and

Vibration 95 (2) (1927) 177–201.

[27] D.A. Bies, Tapering a bar for uniform stress in longitudinal oscillation, Journal of the Acoustical Society of

America 34 (1962) 1567–1569.

[28] L.M.B.C. Campos, F.J.P. Lau, On the acoustics of low Mach number bulged, throated and baffled nozzles,

Journal of Sound and Vibration 196 (1996) 611–633.

[29] L.M.B.C. Campos, A.J.P. Santos, On the propagation and damping of longitudinal oscillations in tapered visco-

elastic bars, Journal of Sound and Vibration 126 (1986) 109–125.

[30] C. Molloy, N-parameter ducts, Journal of the Acoustical Society of America 57 (5) (1975) 1030–1035.

ARTICLE IN PRESS

F.J.P. Lau, L.M.B.C. Campos / Journal of Sound and Vibration 270 (2004) 361–378378


	On the effect of wall undulations on the acoustics of ducts with flow
	Introduction
	Quasi-one-dimensional propagation in a low Mach number nozzle
	Duct with sinusoidal wall undulations
	Acoustic potential, velocity and pressure
	Effect of wavenumber, Mach number and height of corrugations
	Discussion
	Solutions around the maximum and minimum cross-section
	Matching the three pairs of solutions
	References


